让找料更便捷
电子元器件
采购信息平台
生意随身带
随时随地找货
一站式电子元器件
采购平台
半导体行业观察第一站
标签:
摘要: 电路图简介: 智能小车整体主要由语音输入电路、语音输出电路、SPCE061A 控制器、驱动电路等组成。小车的SPCE061控制器通过内置麦克放大器和自动增益功能的A /D 通道、D /A通道实现语音控制,语音触发小车动作,小车动作后,随时可以通过语音指令改变小车的运动状态,如果行进过程中遇到前方有障碍,小车会自动停车。
智能车的核心控制器 SPCE061A 是一款16位独具语音特色的控制器,片内采用的nSPTM 核心处理器,具有较高的处理速度,能够完成16位算术逻辑运算、16 &TImes; 16位硬件乘法运算和DSP内积滤波运算,能够快速处理复杂的数字信号,不需要额外的专用语音控制芯片,就能实现语音的编解码等,既节省了设计成本,又能满足一定的控制要求。控制器采用模块化架构,集成了ICE(在线仿真)、锁相环振荡器、时基控制器、7通道10位AD转换器、单通道AD+ AGC(自动增益)转换器、双通道10位DA转换器、通用异步通信接口、串行输入输出接口、电压监控等模块。实现汽车智能化的技术非常多, 本文利用目前比较热门的技术语音控制技术, 实现小车自动前进、后退、左拐、右拐等, 当然所设计的小车只是智能汽车的微模型, 还处于模拟演示阶段, 要真正实现智能汽车为人服务还有很长一段距离。
智能小车整体主要由语音输入电路、语音输出电路、SPCE061A 控制器、驱动电路等组成。小车的SPCE061控制器通过内置麦克放大器和自动增益功能的A /D 通道、D /A通道实现语音控制,语音触发小车动作,小车动作后,随时可以通过语音指令改变小车的运动状态,如果行进过程中遇到前方有障碍,小车会自动停车。
语音输入电路设计
小车的语音输入电路如图所示。其中,VM IC 提供传声器的电源,VSS是系统的模拟地,VCM 为参考电压,1脚和2脚分别是传声器X1 的正极、负极的输入引脚。当对着传声器讲话时,1脚和2 脚将随着传声器输入的声音产生变化的波形,并在SPCE061A 的两个端口处形成两路反相的波形,送到SPCE061A 控制器内部的运算放大器进行音频放大,经过放大的音频信号,通过ADC转化器转化为数字量,保存到相应的寄存器中,然后对这些数字音频信号进行压缩、辨识、播放等处理。
语音输出电路设计
小车的语音输入电路如图所示。其中,VDDH 为参考电压,VSS是系统的模拟地。音频信号由SPCE061A 的DAC引脚输出送到电路的9端,通过音量电位器R9的调节端送到集成音频功率放大器SPY0030, 经音频放大后,音频信号从SPY0030输出经J2端口外接扬声器播放声音。
光电检测电路设计
小车的光电检测电路采用E18-D80NK型号的光电传感器,它集发射和接受于一体,红外发射管向某一方向发射红外线,遇到障碍物后红外线被反射由接收管接受,从而判断出小车的前方是否有障碍物,对障碍物的感应距离可以根据要求通过传感器上的微调旋钮进行调节。传感器前端增加了透镜,利用聚焦作用远距离探测物体。传感器内部集成了放大、比较、调制电路,使传感器受可见光的影响较小,光电检测电路的连接图如图4所示。
驱动电路设计
小车的驱动电路是一个全桥驱动电路( 图5),Q1,Q2, Q3, Q4四个三极管组成4个桥臂,Q5 控制Q2和Q3的导通和关断,Q6控制Q1 和Q4 的导通和关断,驱动电路分别用于后轮动力驱动电路和前轮方向驱动电路。当1管脚为高电平,2管脚为低电平时时Q1 和Q4 导通,Q2和Q3截止,电动机带动车轮运转; 当1管脚为低电平,2管脚为高电平时时Q1和Q4截止,Q2和Q3导通,电动机带动车轮反向运转。
智能小车系统整体设计
将语音输入电路的1, 2 端口分别连接到SPCE061A控制器的M ICP, N ICN 管脚上; 将语音输出电路的9端口连接SPCE061A的DAC1管脚; 后轮动力驱动电路的1, 2端连接到SPCE061A的IOB8, IOB9管脚,前轮方向驱动电路的1, 2端连接到SPCE061A 的IOB10, IOB11管脚; 光电检测电路的OUT 端连接SPCE061A 的IOB12 管脚,智能小车的整体连接如图6所示。
智能小车的正确识别率在90% 以上,实验过程中发现,影响小车正常辨识的因素主要包括周围环境的噪声、人与小车的距离等,这些需要在今后改进。这种语音控制的智能小车机器人将来不仅可以为人服务,稍加扩展,还可以在多种不适合人作业的场合替代人执行任务。因此这种语音控制小车机器人具有重要的学术研究价值。
在光线较弱的条件下,胶卷或数码摄影的高端设备需要氙气闪光灯管来进行拍摄。氙气闪光灯管可提供瞬间的高强度光源,在对较远处、高速移动或弱光条件下的物体进行拍摄时,这是最基本的要求。这种由氙气放电管产生的光谱与太阳的光谱非常接近,从而提供了非常精确的色彩再现。
一旦施加了触发信号,氙气闪光灯便要求其电极上的高压(通常,该电压大约为300V)来进行闪光。闪光需要的所有能量都被存储在一个称之为“闪光灯电容器”的大电容器中。一旦闪光灯被触发,所有这些存储在闪光灯电容器中的能量便通过闪光灯管被释放出来,以产生光源。这些在闪光灯电容器中存储的能量由一种专门的升压转换器提供,其将闪光灯电容器从一个非常低的电池输入电压充电至高达300V 的电压。在过去,这种转换器由较大体积的分立组件组成,很难被整合到诸如相机等一些小型设备中。
TI 推出的 TPS65552A 极大地简化设计并缩小了相机闪光灯充电器电路的尺寸。图 1就显示了一款基于这种器件的闪光灯电容器充电器。TPS65552A 提供了所有必需的充电控制、输出反馈、充电完成状态、绝缘栅双极晶体管 (IGBT) 驱动器,以及实施一个小型、高效闪光灯充电器所必需的一些电路保护。
图 1 TPS65552A 相机闪光灯电容充电器
TPS65552A 基于一种反向拓扑结构。在内部开关断开期间,其可以感应到输出电压。在这一期间,输出电压通过变压器被反射回输入端。这就没有必要在输出端使用大体积、高压反馈网络,同时还提供了输入端至输出端的电气隔离。一旦这种输出电压达到其目标值,TPS65552A 就自动地停止充电,同时开路集电极输出降低,从而发出一个“闪光灯就绪”状态的信号。该输出能够驱动一个指示状态 LED,或者驱动一个输入至微控制器。
TPS65552A 的 I_PEAK 引脚对在所有开关周期中流经反向变压器 T1 初级绕组的峰值电流进行控制。为了调节电容器充电时间,通过改变施加在 I_PEAK 引脚的电压,可以在 0.9A 到 1.8A 之间对主电流进行动态的调节。这一特性允许微控制器动态地对充电器的流出电流进行控制,以进行电源管理。例如,在数码相机中,微控制器可以在强电流变焦马达工作时减少充电器电流,以使变焦马达和充电器能够同时起作用,而不会超出相机电池的最大电流能力(请参见图 2)。该特性还可以被用于延长电池使用时间。降低充电期间的峰值电流还可降低平均电流消耗,从而使得电量不足的电池也可以对闪光灯电容器进行充电。
图 2 具有电源管理和闪光管理功能的完整的相机闪光灯模块
在过去,闪光灯由一个按钮开关或可控硅整流器 (SCR) 来触发。但是,更新的闪光模式(例如:防红眼模式)使用多重氙气灯暴光。闪光灯被触发进行短闪光,其并没有完全使相机闪光灯电容器放电。于是,在短暂延迟后,闪光灯被重新触发,进行主闪光。按钮和 SCR 不能可靠地开始和停止闪光灯中间闪光。IGBT 能够处理闪光期间通常为 150A 的电流。但是,像 MOSFET 一样,IGBT 栅极要求一个大电流脉冲来快速地开启;因此需要一个高电流驱动器。TPS65552A 具有一个集成的高电流缓冲器来驱动触发电路中使用的 IGBT 栅极。在闪光期间,IGBT 栅极可以被驱动开启和关闭,以支持诸如防红眼等闪光模式,或者通过镜头 (E-TTL) 对 IGBT 栅极进行评估。
型号 | 厂商 | 价格 |
---|---|---|
EPCOS | 爱普科斯 | / |
STM32F103RCT6 | ST | ¥461.23 |
STM32F103C8T6 | ST | ¥84 |
STM32F103VET6 | ST | ¥426.57 |
STM32F103RET6 | ST | ¥780.82 |
STM8S003F3P6 | ST | ¥10.62 |
STM32F103VCT6 | ST | ¥275.84 |
STM32F103CBT6 | ST | ¥130.66 |
STM32F030C8T6 | ST | ¥18.11 |
N76E003AT20 | NUVOTON | ¥9.67 |