让找料更便捷
电子元器件
采购信息平台
生意随身带
随时随地找货
一站式电子元器件
采购平台
半导体行业观察第一站
标签:
摘要: 基于开关磁阻电动机的功率变换器的研究 [日期:2005-5-18] 来源:电子技术应用 作者:齐剑玲 孟小红 刘慧芳 [字体:大 中 小] 功率变换器是驱动开关磁阻电动机的电路装置,为其提供电能。对功率变换器功率开关的通断状态进行合理的控制可实现电机的调速动转。功率变换 器主电路拓扑形式的选取与供电电压、电机相数、主开关器件的种类有密切的关系。合理选择和设计功率变换器是提高SRD的性能价格比的关
1.1 四相八管式功率变换器
二极管与直流电源相连。此电路有三种工作状态。以A相为例,触发T1、T2,两开关管都导通,直流电源如到A相绕组,建立电流和磁链,相电流iA沿图3(3)所示路径流动。当T1和T2中有一个管子关断,A相绕组电流在T1、D2或T2、D1构成的回路中续流。这一过程可减小电流的脉动,相电流iA沿图3(b)所示路径流动。T1和T2都关断,相电源通过D1、D2续流,此时磁链迅速下降,绕组能量回馈电源。相电流iA沿图3(c)所示路径流动。
四相八管式SR电动机功率变换主电路拓扑工作模式分析:在图3(a)所示的模式下直流电源电压提供给电机A相绕组励磁能量。相应的等式为(1)式,式中UT为主开关通态饱和压降,RA为A相电阻,ψA为A相磁链。在图3(b)所式模式下,设上开关管关断,相应的等式为(2)式;Ud为二极管导通压降。在图3(c)模式下,相应的等式为(3)式。
四相四管双绕组式SR电动机功率变换器主电路拓扑工作模式分析:在图5(a)所示的模式下,相应的等式为(4)式,iA1为与主开关相联的绕组中电流,RA1为与主开关相联的绕组的电阻。在图5(b)所示的模式下,相应的等式为(5)式,iA2为与二极管相联的绕组中电流,RA2为与二极管相联的绕组的电阻。
电容将直流电源等分。此电路的工作状态用A、B两相来说明。A相工作时,S1开通,由C1向A绕组建立电流;S1关断,D1续流回馈电流给C2,相电流iA沿图7(a)所示路径流动。B相中的开关管和续流二极管位置与A相对调,目的是保证正、负电源供电平衡。B相工作时,相电流iB沿图7(b)所示路径流动。C、D相同理。
四相四管等分直流电源式SR电动机功率变换器主电路拓扑分析:在图7(a)所示的模式下,直流电源给A相供电,相应的等式为(6)式,开关断开相应的等式为(7)式。
1.4 四相五管(n+1)式功率变换器
四相五管(n+1)式SR电动机功率变换器主电路拓扑分析:在图9(a)所示的模式下,直流电源给A相供电,相应的等式为(8)式;在图9(b)所示的模式下,相应的等式为(9)式;在图9(c)所示的模式下,相应的等式为(10)式。
1.5 四相五管带电容存储型功率变换器
电容器C0中,相电流iA沿图11(b)所示路径流动;当电容C0的电压高于电源电压时,开通开关S0,通过电感L0实现二次馈电,沿图11(c)所示路径流动。
图9
四相五管带电容存储型SR电动机功率变换器主电路拓扑分析:在图11(a)所示的模式下,相应的等式为(11)式;在图11(b)所示的模式下,相应的等式为(12)式;在图11(c)所示的模式下,相应的等式为(13)式。
电池或交流整流后得到的直流电供电。下面给出两种整流电路的仿真模型及波形,分别如图12、图13所示。
图12
目前,针对不同的SR电机调速系统,已经出现很多类型的功率变换器。总体来看,四相八管式SP电动机功率变换器(不对称半桥型)和四相五管(n+1)式SR电动机功率变换器主电路应用的比较多。系统中电机结构形式、系统的性能要求、系统采用的控制策略、经济成本、应用环境等是系统选择功率变换器所需要考虑的几个因素。为适应SR驱动系统的发展,开发能够独立、快速又精确地对SR电机相电流进行控制且主开关数目最少的功率变换器,特别是适合在低压小功率场合应用的功率变换器,是目前开关磁阻电动机驱动系统的研究方向之一。
图13
型号 | 厂商 | 价格 |
---|---|---|
EPCOS | 爱普科斯 | / |
STM32F103RCT6 | ST | ¥461.23 |
STM32F103C8T6 | ST | ¥84 |
STM32F103VET6 | ST | ¥426.57 |
STM32F103RET6 | ST | ¥780.82 |
STM8S003F3P6 | ST | ¥10.62 |
STM32F103VCT6 | ST | ¥275.84 |
STM32F103CBT6 | ST | ¥130.66 |
STM32F030C8T6 | ST | ¥18.11 |
N76E003AT20 | NUVOTON | ¥9.67 |