简介:新推出的全桥移相控制器LM5046,全桥变换器的全部功能,LM5046组成的全桥DC-DC基本电路,内部等效电路。而其具备28个PIN脚功能,文中一一有分解说明。
关键词:全桥移相控制器L345046;28个PIN脚功能
1 LM5046的功能
新推出的全桥移相控制器LM5046,包含执行全桥变换器的全部功能,它既可以按电流型工作,也可以按电压型工作,它放置于DC-DC的初级侧工作,具有100V的高压启动源,它提供具有2A驱动的高边及低边栅驱动器。直接驱动外部四支组成全桥拓扑的MOSFET,同时加入了对二次侧同步整流MOSFET的驱动信号,由外部电阻调节前沿及后沿的主控与同步驱动间的死区时间,其它特色有逐个电流式限流保护,打嗝模式重新起动,最高振荡频率为2MHz,可以外同步。芯片还有过热保护功能。在UVLO和打嗝模式下禁止同步整流信号。反馈系统有宽带光耦接口,其驱动二次侧同步整流信号不用变压器而采用隔离信号传输器件Si8420BB,简化了设计及装配,LM5046组成的全桥DC-DC基本电路如图1。

其28个PIN脚功能如下:
1PIN UVLO线路欠压闩锁端,外部用一个电阻分压器从Uin接至GND,设置关断点及待机比较器电平。当UVLO达到0.4V时,VCC和VREF被禁止。在1.25V时,SS端重新起动,控制器开始工作。窗口设置由内部20μA电流漏及外部电阻分压器决定。
2PIN OVP/OTP过压保护端,用一个外部分压器从Uin到GND设置过压条件的关断点。此外,在外部加一支NTC热检测分压器,用来设置过热保护点的温度,阈值为1.25V,窗口由内部20μA电流源及外部电阻分压器决定。
3PIN RAMP送至PWM比较器.调制斜波给PWM比较器,此斜波可以是由初级电流或与初级电压成比例的预置信号,将此端复位到GND时将终止每一个周期。
4PIN CS电流检测输入,如果CS端电平超出750mY,则PWM输出脉冲将终止,进入逐个周期式限流,一个内部开关保持CS端在低电平停留40ns,随后输出开关电平变为高电平,用于消隐前沿传输。
5PIN SLOPE斜率补偿电流,一个从0~100μA上斜电流源用来提供斜率补偿(电流型工作时),该端可以通过一支合适的电阻接到CS端来提供斜率补偿。如果不需要斜率补偿,将其接至GND。
6PIN COMP输入到脉冲宽度调制器,外部光耦接到此端,给出的电流送至内部NPN晶体管的电流镜,PWM的占空比在零输入时为最大,达到1mA时,占空比减到0。电流镜改善了频率响应,减少了经过光耦的交流电压。
7PIN REF 5V基准电压源,最大供出15mA电流,用0.1μF电容在外部旁路。
8PIN RT/SYNC振荡器频率设置及外同步控制,外部用一支电阻接于RT和AGND端设置振荡器频率。外同步采用AC耦合法,将同步脉冲加到RT/SYNC端,正常同步电平为1.5~2V。
9PIN AGND模拟GND,其与功率GND直接单独连接。
10PIN DR1同步整流器前沿延迟,将一支电阻接于RD1到AGND。设置从SR1的下降沿的延迟,或SR2与HO2/LO1的上升沿(或HO1/LO2)。
11PIN RD2同步整流器后沿延迟。将一支电阻接于RD2到AGND,设置从HO1/LO2下降沿的延迟(或LO2/HO1),以及SR2或SR1相应的上升沿的延迟。
12PIN RES重新起动时段,当CS端超出750mV,电流限制阈值时,有一个30μA电流源进入RES电容,用于PWM周期的剩余时间,如果RES电容电压达到1.0V,则SS端电容放电,禁止HO1、HO2、LO1、LO2和SR1、SR2的输出。SS端保持低电平直到RES电容上的电压上斜道2~4V之间共八
个时段。此间其以10μA充电5μA放电。延迟顺序后,SS端电容释放之,进入正常起动顺序。
13PIN SS软起动输入,IC内20μA电流源在起动期间给SS端充电,输入到PWM比较器电压随SS电容充电上升到稳态,开始增加PWM占空比。将SS端电平下拉到200mV以下时停止PWM脉冲,并关断同步整流器驱动到低电平。
14PIN SSSR二次侧软起动,外部接一支电容加上内部20μA电流源设置软起动斜波给二次侧同步整流器,SSSR电容充电在初级输出脉冲后使能,即SS>2V及ICOMP<800μA之下。
15PIN SSOFF软关断禁止。当SS OFF端接到AGND时,LM5046软关断。系在Uin,UVLO故障及打嗝式过流保护时出现,如果SSOFF端接于REF端,控制器为在任何条件下都是硬关断。
19PIN SR2同步整流驱动器,控制同步整流器的栅输出,源出峰值电流100mA漏入400mA。
21PIN VCC起动稳压器的输出,起动稳压器的输出在内部调节到9.5V,一旦二次侧软起动达到1V,VCC输出减到7.7V,如果辅助绕组将此端电压上升到9.5V设置点以上,内部起动稳压器将关断,以减小IC的功耗。
22PIN PGND功率地与AGND直接连接。
23PIN、20PIN LO1、LO2两低边输出驱动PWM栅驱动输出,驱动能力为源出1.5A峰值、漏入2A峰值能力。
24PIN SR1同步整流驱动器,控制同步整流器的栅输出,源出峰值电流100mA、漏入400mA。
25PIN、18PIN BST1、2栅驱动升压点,将高边栅驱动升压电容接于BST1、2和SW1、2之间,当SW1、2为低电平时给升压电容充电。
26PIN、17PIN:HO1、2高边输出驱动器,高边PWM输出能力为源出1.5A,漏入2A。
27PIN、16PIN HS1、2开关结点,接到高边MOSFET源极与低边MOSFET漏极以及变压器初级线圈处。
28PIN Uin高压输入端,高压起动源输入,工作范围为14~100V。也可以与VCC连接直接由外部稳压器供电。
2 集成电路的特性
(1)高压起动源
LM5046包含一个内部高压起动稳压器,它允许输入端(Uin)直接接到外部电源电压,可以从14~100V。瞬间可承受105V。当UVLO端大于0.4V时VCC稳压器开始给VCC外部电容充电,VCC调整器供电给VREF基准源及外部全桥功率MOSFET的栅驱动供电。当VCC端电压超过UV欠压阈值时,内部基准源达到5V,此时UVLO电压将大于1.25V,软起动电容释放,正常工作开始,VCC内部稳压器输出设有限制,VCC电容值取决于整个系统的设计及起动充电,推荐VCC电容从0.47~10μF。
LM5046的内部功耗可以用外部供电来减小,VCC输出电压在IC内部设置在9.5V,同步整流开始工作后,VCC电压减小到7.7V,在典型应用中,辅助源通过二极管接到VCC,这个辅助线圈必须将VCC升到8V以上,去关断内部的高压起动源,从辅助绕组给VCC供电,可以改善效率,减小控制IC的功耗,VCC、UV电路在此模式将停止功能,VCC决不能降到UV阈值以下,正常工作时,Uin到VCC不会正向偏置,因此辅助源电压VCC决不能超过VIN电压。
一个外部DC偏置电压可用来替代内部稳压器,从外部接到’VCC和Uin两端,外部偏置源电压必须大于10V,低于14V。
(2)线路欠压检测器
LM5046有两个UVLO的电平电路,当UVLO电压低于0.4V时,控制器处于低电流的关断模式。当UVLO端电压大于0.4V,但低于1.25V时,控制器处于待机模式。待机时,VCC和REF偏置源激活,但控制器输出驱动被禁止。当VCC和REF输出超过欠压阈值时,UVLO端电平大于1.25V。软起动电容释放,正常工作开始,从Uin到GND的分压器设置点电压用来设置变换器最小工作电压,分压器设计必需使UVLO端电平大于1.25V。当Uin进入设计范围时,UVL0窗口完成,由内部20μA电流漏出进入分压器设置点,当UVLO电压降到1.25V阈值以下时,电流漏使能,使UVLO端迅速下降,其0.4V的窗口关断,内部50mV窗口的比较器。
UVLO端还可以用来执行各种遥控的使能及禁止功能,可强制UVLO处于待机条件(0.4V<UVLO<1.25V),提供软关断功能。
(3)过压保护
用一个外部电压分压器设置过压或过热保护。在OVP条件时,SS和SSSR电容放电,所有输出被禁止,分压器必须设计成应对OVP时要大于1.25V。当过压或过热条件出现时,窗口变化由内部20μA电流源完成。当OVP端超过1.25V时,20μA电流源激活,迅速升高OVP端电压。当OVP端电压降到1.25V阈值以下时,电流源被禁止,使OVP端电压迅速降下。
(4)基准电压源
REF端输出5V,为线性稳压器,它用来偏置光耦的三极管及外部的管理电路,输出电流为15mA,REF端需去耦瓷介电容,容值为0.1~10μF。
(5)振荡器及外同步输入
LM5046的振荡器频率设置用一支外部电阻接于RT和AGND之间。RT电阻将紧靠IC,设置频率的电阻RT计算如下式:

例如,振荡频率为400 kHz,对每一相为200 kHz,RT的值为25 kΩ,如果LM5046由外部时钟同步,信号必须耦合到RT端要由100pF电容隔开,RT端电压通常为2.0V,外同步脉冲的幅度应在3.5~5V,由低到高电平的传输,同步脉冲的宽度为15~200ns。RT电阻永远需要,无论是自由振荡还是外同步,SYNC频率必须等于或大于RT设置的频率。当外同步时,推荐加入斜率补偿,其系从VCC到CS端加入一支电阻,还要禁止SLOPE端接AGND。(未完待续)
(6)逐个周期式电流限制
CS端由变压器初级电流信号来驱动,如果CS端电压超过0.75V电流检测比较器会立即终止PWM的周期,用一个小的RE滤波器接到CS端并紧靠控制器,用推荐的方法抑制噪声。内部一个18Ω的MOSFET放掉外部电流检测滤波器上的电荷,每个周期放电一次,放电MOSFET在一个新的PWM周期开始后导通40ns,做前沿尖刺消隐,电流检测比较器非常快速地去响应,以缩短噪声脉冲,对电流检测滤波器和检测电阻布局时非常关键,电容与CS端滤波器必须紧靠器件,并直接接到CS和AGND端。如果用电流互感器,其两个引线紧绕滤波网络,并紧靠IC。当用电流检测电阻时,所有对噪声敏感的小功率地线连接都要接在一起,然后接于AGND,并用单一线再接至功率地。
(7)打嗝工作模式
LM5046提供一个限流重起时段去禁止控制器输出并强制一次延时重新起动, (即打嗝模式),如果限流条件迅速检测出来,数个逐个限流周期式需要由外部电容在RES端调节,在每个PWM周期中,LM5046从RES电容处或者源出或者漏入电流,如果检测出限流条件,则5μA电流漏被禁止,30μA电流源被使能,如果RES电压达到1.0V阈值,重起顺序出现。
◇SS和SSSR电容完全充电;
◇30μA电流源关断,10μA电流源开启;
◇一旦RES端电压达到4.0V,10μA电流源即关断,5μA电流漏开启,RES电容上的电压下斜到2V;
◇一旦RES电容电压达到2.0V阈值,10μA电流源再次开启,RES电容电压在4.0V和2.0V之间上下共八次;
◇当计数达到八次时,RES端电压下拉低,软起动电容释放重新开启软起动过程,当SS端电压达到1.0V时,PWM比较器将产生第一个窄脉冲;
◇如果过载条件在重新起动后持续,将开始逐个周期式限流,并再次增加RES端电容的电压,重复在打嗝模式之下;
◇如果过载条件在重新起动后不再延长出现,RES端将保持地电平,其由5μA电流漏保持继续正常工作。
打嗝模式功能可以用将RES接到ACND来禁止。在此结构下,逐个周期式保护将立即限制最大输出电流,没有打嗝状态再次出现。
(8)PWM比较器
LM5046脉宽调制比较器是一个三输入端器件,它比较RAMP端的信号,环路误差信号或软起动信号,无论谁为低电平,都去控制占空比。这个比较器为了实现可控制的最小占空比,将工作速度最佳化,环路误差信号系从外部反馈并给隔离电路形成控制电流进入COMP端,COMP端电流在内部由一对NPN晶体管镜像出来,它通过一支5kΩ电阻接到5V基准,结果控制电压经过1V的变化,经过2:1的电阻分压器加到PWM比较器。
光耦检测器可以接于REF端和COMP端之间,因为COMP端由输入电流控制,经过光耦检测器的潜在差异接近常数,带宽限制相位延迟,通常由光耦的有效电容插入,从而大大减小。更高的环路带宽可以达到,因为带宽限制与光耦一起的极点,现在其在更高的频率处,PWM比较器的极性与COMP端没有电流流入结合在一起,使控制器产生最大的占空比。
(9)RAMP端
在RAMP端的电压提供调制的斜波给PWM比较器,PWM比较器在RAMP端调制斜波信号,经环路误差信号去控制占空比。调制斜波信号可以执行,或者作为正比于输入电压的斜波,或者作为电压前馈模式的控制。RAMP端由内部MOSFET(RSD (ON)5.5Ω)来重新设置,能使RAMP端,或为电压型或为电流型控制,允许控制器以最佳控制方法工作,其仅取决于设计约束。
(10)斜率(SLOPE)端
在占空比大于50%的情况,峰值电流模式控制会产生次谐波震荡,次谐波震荡是监视宽窄占空比下的正常特性,这可以用加入一个人造斜波来消除之,此即斜率补偿去调制RAMP端的信号。SLOPE端提供一个斜波电流源,从0~100μA,其频率为RT设置的振荡频率作为斜率补偿,斜波电流源在SLOPE端用来以不同方式给RAMP信号加上斜率补偿。
①如图2(a)SLOPE和RAMP端可以通过合适的电阻一起接在CS端,这种结构将射入电流检测信号加上斜率补偿到RAMP端,但是CS端没有见到任何斜率补偿,因此,在此图中,斜率补偿没有影响电流限制。

②在第一个图中,如图2 (b)SLOPE、RAMP和CS端可以接在一起。在此结构中,斜的电流源从SLOPE端出来通过滤波器电阻电容流出。因此,CS和RAMP两端将见到电流检测信号加上斜率补偿斜波。在此图中,电流限制工作由斜率补偿完成,限流设置点将会改变。
如果不需要斜率补偿,在电压前馈模式控制中,SLOPE端必须接到AGND端。当RT端同步到外时钟时,推荐禁止将SLOPE端加上斜率补偿,由外部从VCC到CS端接上一支合适的电阻来完成。
(11)软起动
软起动电路允许功率变换器很好地达到稳定状态工作点,因此要减小起动应力和电流浪涌。当偏压加到LM5046时,SS端电容由内部MOS-FET将其放电。当UVLO、VCC及REF端达到工作阈值内时,SS电容被放开,开始由20μA电流源重新充电,一旦SS端电压跨过1V,SS将控制占空比,PWM比较器是一个有三输入端的器件,它比较RAMP信号应对软起动和环路误差信号之间的较低信号。在典型的隔离应用中,在二次侧建立起偏置源后,二次侧的误差放大器开始软起动并建起闭环控制来取代从SS端的控制方法。
关断调节器的一种方法是将SS端接到GND,这样强制内部的PWM控制信号到GND,迅速减少输出占空比到0,相关的SS端开始软起动周期使正常工作恢复,第二个关断方式是在UVLO部分设置。
(12)栅驱动器输出
LM5046提供四个栅驱动器,两个浮动的高边栅驱动器HO1和HO2,两个接GND的低边驱动LO1和LO2。每个内部驱动器都能源出1.5A峰值漏入2A峰值电流。初始时,HO1和LO2先一起导通,随后四个栅驱动都关断,然后HO2和LO1一起导通,低边栅驱动器直接由VCC供电,而HO1和HO2栅驱动器则从升压电容处供电,升压电容接于BST1/BST2和HS1/HS2之间,一个外部二极管接于VCC和BST之间,提供高边栅驱动的功率,其能量从VCC给升压电容充电得到,当高边MOSFET导通时,BST1升到峰值电压为VCC+VHS1。此处VHS1为开关结点电压,BST和VCC电容要紧靠LM5 046的相应端子,以防止寄生电感,减小电压传输,推荐BST电容为0.1μF,或者再大一些,一个低ESR/ESL电容用于此处,防止HO传输压降。
如果COMP端为开路,输出将工作在最大占空比,最大占空比对每一相都有死区时间其由RD1电阻设置,如果RD1电阻为0,则最大占空比略小于50%,因IC内有一个固定的死区时间,内部固定的死区时间为30ns,它不会随着工作频率变化,最大占空比对每个输出都可以用下面公式算出

此处,T1是由RD1电阻和FOSC设置的时间,FOSC是震荡频率。例如,设置400kHz振荡频率,T1时间由RD1电阻设在60ns,结果DMSX为0.488。
(13)同步整流器的控制输出(SR1、SR2)
变压器二次侧采用同步整流可以大幅度提高效率,特别对于低输出电压的变换器,整流二极管的正向压降从0.5V~1.5V减到10mV~200mV。采用MOSFET的同步整流有效地降低了损耗,在典型应用中,变压器二次侧绕组为中心抽头式,输出滤波电感与之串联,同步整流的MOSFET提供接地通路,流过电感电流,从图3可见,当H01/L02导通时,功率传输从初级到次级。此时,SR1的MOSFET使能导通,而SR2的MOSFET关断,二次侧线圈接到SR2,MOSFET的漏极,电感电流连续流过SR2的MOSFET体二极管,体二极管会导致更大的损耗,此时,令SR2的MOSFET导通,大幅度降低功耗,为了防止电流短路,当H02/LO1使能时,SR2的MOSFET导通而SR1的MOSFET关断。

在自由运转期,电感电流总是均衡地流过SR1和SR2的MOSFET,在H01/LO2导通之前,SR2的MOSFET被禁止,SR2的体二极管连续地携带大约一半的电感电流直到初级功率上升,将SR2 MOSFET的体二极管反偏,死区时间T1将设置允许SR的MOSFET关断的最小时间。
SR驱动器由REF稳压器供电,每个SR输出都能源出0.1A,漏入0.4A电流驱动电压为5V,5V的SR信号使LM5046传输SR信号经过隔离边界,它可通过固态隔离器或变压器完成.实际的MOSFET源和漏电流由二次侧栅驱动供给。

T1和T2由外部接到RD1和RD2到AGND的电阻调节器,注意,当RD4应对最大占空比时,RD2则不,RD1和RD2电阻要紧靠IC,电阻值由下式计算:

RD应在20~100k之间。如果死区T1为60ns。则RD1为20kΩ。
(14)同步整流器的软起动
前面已经讲过,LM5046包含二次侧的软起动功能,这样极大地令同步整流器进入稳态占空比,这个功能保持同步整流器在基本的软起动期间关断。允许输出电压线性地增长,进入预偏置负载,然后SR输出占空比增大,防止输出电压因不同二极管压降及导通电阻而扰动。再有,当LM5046加入偏置源时,SSSR电容由内部MOSFET放电,当SS电容充电到2V时,COMP将控制占空比,亦即ICOMP<800μA,SSSR放电,释放的SSSR电容开始由20μA电流源充电,在同步整流的软起动期间,SR1和SR2同时导通,如图5(a)所示,为防止任何的变压器不平衡,进入稳态如图5 (b)同步整流器输出可以用将SSSA端接地来禁止。

(15)预偏置起动
对功率变换器共同的需要是有一个单调的输出电压起动上升,进入预偏置负载,即预充电给输出电容,在预偏置负载条件下,如果同步整流器遭遇不成熟期,它将会从预充电的输出电容漏入电流。结果导致不希望有的输出电压下沉。这是不希望出现的,而且可能损坏功率变换器。LM5046使用独有的控制电路确保同步整流器的智能导通,输出电压单一方向上升,起动时,SSSR电容保持地电平,禁止同步整流的MOSFET,只允许其体二极管工作,一旦占空比开始由COMP控制替代软起动电容。亦即ICOMP<800μA及SS端电压>2V,同步整流器的软起动将起始。SSSR电容然后释放,由20μA电流源充电,进一步见图6。在SSSR端一个1V的偏置用来提供附加的延迟,这个延迟可以确保输出电压稳定,在同步整流MOSFET工作时防止任何反偏电流。 (未完待续)

* UVLO和OVP的分压器选择
IC内两个比较器接于UVLO和OVP端用来检测欠压、过压条件。两个比较器的阈值设为1.25V,两个功能用两个外部电阻分压器调节。分压器都有接在VIN到AGND之间,如图12,图13,或都用三个电阻分压器如图14.独立的UVLO和OVP端提供有较大柔性的选择范围,当UVLO端电压低于0.4V时,控制器进入低电流关断,对于UVLO端电压大于0.4V但低于1.25V时,控制器处于待机模式,当UVLO端电压大于1.25V时,控制器全部使能,两个外部电阻用来调整最小工作电压如图13,当UVLO端电压降到1.25V以下时,内部20μA电流漏使能,将UVLO端电压进一步降低,电阻R1和R2计算如下

此处,VPWR为所要的开启电压VHYS为所要的UVLO在VPWR下的窗口,例如,如果LM5046在VPWR达到33V使能,在VPWR减到31V时关断,R1将是100kΩ,R2为4.2kΩ,UVLO端电压任何时候都不会超过7V。


两个外部电阻能用来调节最大工作电压如图12,当OVP端电压升到1.25V以上时,内部20μA电流源使能升高OVP端电压,于是提供了一个保护窗口,电阻值R1和R2计算如下

如果LM5046在VPWR-OFF达到80V时被禁止工作,而在78V时使能,则R1=100kΩ,R2为1.5kΩ,OVP端电压任何时候不得超过7V。
UVLO和OVP也可以用三支电阻一起设置如图14。R1的计算基于UVLO分压器,用相同的值,UVLO及OVP设置点R1和R3仍旧为100kΩ和1.5kΩ,R2为2.7kΩ时R3为4.2kΩ。
遥控电路控制器的工作模式,可以用一个漏极开路的器件接到UVLO端如图15示出用OVP比较器作过热保护。但热敏电阻应放在发热源的功率器件处。

* 电流检测
CS端接收变压器的初级侧电流信号,它可以由电流互感器送来也可以从检测电阻送来,如图16,图17所示。在两种情况下,滤波元件RF和CF要位于IC附近,接地点靠近PGND端,电流检测比较器必须提供710mV的信号在CS端做为过载电平,一旦CS端电压超过此值电流检测比较器终止PWM脉冲,并开始给RES端充电,LM5046将进入打呃模式或连续限流模式。


* 打呃限流工作模式和重新起动
打呃限流工作模式在功能描述部分已叙述,在此限流模式RES端由30μA电流源充电,重新起动延迟时间需要达到1.0V阈值,由下式给出

如果CRES=0.01μF,TCS将为334μS,一旦RES达到1.0V,30μA电流源关断,10μA电流源在其上斜到4V时开启,然后5μA在下斜到2V时开启,打呃模式的关断时间为

当CRES=0.01μF打呃时间为49mS,一旦此段完成,RES端拉低SS端释放,允许重新软起动。一旦SS端升到1V,则PWM脉冲开始工作,打呃模式提供给功率变换器在过载时一段冷却时间,减少了输入电流。(