电子产业
数字化服务平台

扫码下载
手机洽洽

  • 微信小程序

    让找料更便捷

  • 扫码下载手机洽洽

    随时找料

    即刻洽谈

    点击下载PC版
  • 华强电子网公众号

    电子元器件

    采购信息平台

  • 华强电子网移动端

    生意随身带

    随时随地找货

  • 华强商城公众号

    一站式电子元器件

    采购平台

  • 芯八哥公众号

    半导体行业观察第一站

DC-to-DC Converter Combats EMI

来源:电子发烧友 作者:华仔 浏览:208

标签:

摘要: Abstract: Unwanted electromagnetic radiation referred to as EMI is emitted by all electronic systems, including switching regulators. Adopting spread-spectrum pulse-width modulation (SSPWM) as a control scheme enhances the suppression of E...

Abstract: Unwanted electromagneTIc radiaTIon referred to as EMI is emitted by all electronic systems, including switching regulators. AdopTIng spread-spectrum pulse-width modulaTIon (SSPWM) as a control scheme enhances the suppression of EMI. Driving the external clock input pin of the MAX1703 DC-DC converter with a pseudo-random noise (PN) provides the regulator with a spread spectrum clock that reduces EMI. Spreading the interference frequencies over a wide range lowers the EMI power density that is otherwise concentrated at a single clock frequency.

Electromagnetic radiation (called electromagnetic interference or EMI when it's unwanted) is emitted by nearly all electronic systems, including switching regulators. To suppress EMI, the conventional method is to block the radiation at its source with a metallic or magnetic shielding, or both. For switching regulators, you can further enhance suppression by adopting a spread-spectrum pulse-width modulation (SSPWM) control scheme.

In Figure 1, the switching regulator IC (U1) has an external clock input. Driving this input with a digital signal of pseudo-random noise (PN) provides the regulator with a spread-spectrum clock that reduces EMI. By spreading interference frequencies over a wide range, this technique lowers the EMI power density that is otherwise concentrated at a single clock frequency.

Figure 1. To reduce EMI, this conventional step-up DC-DC converter employs spread-spectrum pulse-width modulation (SSPWM) produced by the PN clock input.
Figure 1. To reduce EMI, this conventional step-up DC-DC converter employs spread-spectrum pulse-width modulation (SSPWM) produced by the PN clock input.

The PN generator (Figure 2) spreads interference over a wide spectrum. Its key element is two 8-bit shift registers (U2 and U3) connected in series to form a 16-bit shift register, with feedback from the XOR gate U4A. The result is an almost random (pseudo-random) output, consisting of a repeating sequence of ones and zeroes at a nominal frequency of 650kHz. The D flipflop (U5) divides this frequency by two, producing a nominal 325kHz spread-spectrum clock signal to the switching regulator.

Figure 2. This generator of pseudo-random noise (PN) produces a nominal 325kHz clock signal for the Figure 1 circuit.
Figure 2. This generator of pseudo-random noise (PN) produces a nominal 325kHz clock signal for the Figure 1 circuit.

Bench measurements show a 15dB reduction in peak power-density at about 300kHz. Except for 9mA of extra current drawn by the PN generator, the regulator's efficiency remains unchanged. (The efficiency is 94% while delivering 0.5A with a 3.6V input and 5V output.) Ripple amplitude in the time domain also remains unchanged. Output spectra show that a conventional fixed-frequency clock (Figure 3) produces considerably more noise than does the spread-spectrum technique (Figure 4).

Figure 3. This output-noise spectrum is produced by the Figure 1 circuit operating with a fixed-frequency control scheme.
Figure 3. This output-noise spectrum is produced by the Figure 1 circuit operating with a fixed-frequency control scheme.

Figure 4. An SSPWM control scheme produces less output noise in the Figure 1 circuit than does the conventional fixed-frequency approach.
Figure 4. An SSPWM control scheme produces less output noise in the Figure 1 circuit than does the conventional fixed-frequency approach.

A similar version of this article appeared in the November 5, 2001 issue of Electronic Design magazine.


型号 厂商 价格
EPCOS 爱普科斯 /
STM32F103RCT6 ST ¥461.23
STM32F103C8T6 ST ¥84
STM32F103VET6 ST ¥426.57
STM32F103RET6 ST ¥780.82
STM8S003F3P6 ST ¥10.62
STM32F103VCT6 ST ¥275.84
STM32F103CBT6 ST ¥130.66
STM32F030C8T6 ST ¥18.11
N76E003AT20 NUVOTON ¥9.67