电子产业
数字化服务平台

扫码下载
手机洽洽

  • 微信小程序

    让找料更便捷

  • 扫码下载手机洽洽

    随时找料

    即刻洽谈

    点击下载PC版
  • 华强电子网公众号

    电子元器件

    采购信息平台

  • 华强电子网移动端

    生意随身带

    随时随地找货

  • 华强商城公众号

    一站式电子元器件

    采购平台

  • 芯八哥公众号

    半导体行业观察第一站

一款高性能低功耗数据采集系统的设计详解

来源:华强电子网 作者:华仔

标签:

摘要: 电路功能与优势越来越多的应用要求数据采集系统必须在极高环境温度下可靠地工作,例如井下油气钻探、航空和汽车应用等。图1所示电路是一个16位、600 kSPS逐次逼近型模数转换器(ADC)系统,其所用器件的额定温度、特性测试温度和性能保证温度为175°C.很多此类恶劣环境应用都采用电池供电,因此该信号链针对低功耗而设计,同时仍然保持高性能。AD7981 ADC需要2.4 V至5.1 V的外部基准电压源

电路功能与优势

越来越多的应用要求数据采集系统必须在极高环境温度下可靠地工作,例如井下油气钻探、航空和汽车应用等。图1所示电路是一个16位、600 kSPS逐次逼近型模数转换器(ADC)系统,其所用器件的额定温度、特性测试温度和性能保证温度为175°C.很多此类恶劣环境应用都采用电池供电,因此该信号链针对低功耗而设计,同时仍然保持高性能。

AD7981 ADC需要2.4 V至5.1 V的外部基准电压源,本应用选择的基准电压源为微功耗2.5 V精密基准源ADR225,后者也通过了高温工作认证,并具有非常低的静态电流(210°C时最大值为60μA)。

本电路使用低功耗(600 kSPS时为4.65μA)、耐高温PulSAR ADC AD7981,它直接从耐高温、低功耗运算放大器AD8634驱动。

本设计中的所有IC封装都是专门针对高温环境而设计,包括单金属线焊。此外,本设计说明了无源元件、印刷电路板(PCB)材料和建构技术的选择,以使其能在极端温度下工作,并且提供了完整的设计支持包,包括物料清单、原理图、装配和布局文件。

MSOP封装,额定温度为175°C.图2给出了连接示意图。

开关闭合,容性DAC在ADC输入端注入一个电压毛刺(反冲)。ADC驱动器帮助此反冲稳定下来,并将其与信号源相隔离。

低功耗(1.3 mA/放大器)双通道精密运算放大器AD8634适合此任务,因为其出色的直流和交流特性对传感器信号调理和信号链的其他部分非常有利。虽然AD8634具有轨到轨输出,但输入要求从正供电轨到负供电轨具有300 mV裕量。

此裕量要求使得负电源成为必要,所选负电源为?2.5 V.

AD8634提供额定温度为175°C的8引脚SOIC封装和额定温度为210°C的8引脚FLATPACK封装。

Analog Dialogue文章:精密SAR型模数转换器的前端放大器和RC滤波器设计。

本电路中,ADC驱动器为单位增益缓冲配置。增加ADC驱动器增益会降低驱动器带宽,延长建立时间。这种情况下可能需要降低ADC吞吐速率,或者在增益级之后再使用一个缓冲器作为驱动器。

基准电压源

ADR225 2.5 V基准电压源在时210°C仅消耗最大60μA的静态电流,并具有典型值40 ppm/°C的超低漂移特性,因而非常适合用于该低功耗数据采集电路。ADR225的初始精度为±0.4%,可在3.3 V至16 V的宽电源范围内工作。

像其他SAR ADC一样,AD7981的基准电压输入具有动态输入阻抗,因此必须利用低阻抗源驱动,REF引脚与GND之间应有效去耦,如图4所示。除了ADC驱动器应用,AD8634同样适合用作基准电压缓冲器。

使用基准电压缓冲器的另一个好处是,基准电压输出端噪声可通过增加一个低通RC滤波器来进一步降低。在该电路中,49.9Ω电阻和47μF电容提供大约67 Hz的截止频率。

陶瓷电容,但对于高温应用,没有陶瓷电容可用。因此,选择一个低ESR、47μF钽电容,其对电路性能的影响极小。

数字接口

AD7981提供一个兼容SPI、QSPI和其他数字主机的灵活串行数字接口。该接口既可配置为简单的3线模式以实现最少的输入/输出数,也可配置为4线模式以提供菊花链回读和繁忙指示选项。4线模式还支持CNV(转换输入)的独立回读时序,使得多个转换器可实现同步采样。

本参考设计使用的PMOD接口实现了简单的3线模式,SDI接高电平VIO.VIO电压是由SDP-PMOD转接板从外部提供。

电源

本参考设计的+5 V和?2.5 V供电轨需要外部低噪声电源。AD7981是低功耗器件,可由基准电压缓冲器直接供电,如图5所示,因而无需额外的供电轨,节省功耗和板空间。

元器件故意全都放在正面,以方便从背面加热进行温度测试。关于其他布局布线建议,参见AD7981数据手册。

针对高温电路,必须采用特殊电路材料和装配技术来确保可靠性。FR4是PCB叠层常用的材料,但商用FR4的典型玻璃转化温度约为140°C.超过140°C时,PCB便开始破裂、分层,并对元器件造成压力。高温装配广泛使用的替代材料是聚酰亚胺,其典型玻璃转化温度大于240°C.本设计使用4层聚酰亚胺PCB.

PCB表面也需要注意,特别是配合含锡的焊料使用时,因为这种焊料易于与铜走线形成金属间化合物。常常采用镍金表面处理,其中镍提供一个壁垒,金则为接头焊接提供一个良好的表面。此外,必须使用高熔点焊料,熔点与系统最高工作温度之间应有合适的裕量。本装配选择SAC305无铅焊料,其熔点为217°C,相对于175°C的最高工作温度有42°C的裕量。

型号 厂商 价格
EPCOS 爱普科斯 /
STM32F103RCT6 ST ¥461.23
STM32F103C8T6 ST ¥84
STM32F103VET6 ST ¥426.57
STM32F103RET6 ST ¥780.82
STM8S003F3P6 ST ¥10.62
STM32F103VCT6 ST ¥275.84
STM32F103CBT6 ST ¥130.66
STM32F030C8T6 ST ¥18.11
N76E003AT20 NUVOTON ¥9.67