华强电子网

电子元器件
采购信息平台

扫码下载
手机洽洽

  • 微信小程序

    让找料更便捷

  • 扫码下载手机洽洽

    随时找料

    即刻洽谈

    点击下载PC版
  • 华强电子网公众号

    电子元器件

    采购信息平台

  • 华强电子网移动端

    生意随身带

    随时随地找货

  • 华强商城公众号

    一站式电子元器件

    采购平台

  • 芯八哥公众号

    半导体行业观察第一站

激光技术到半导体激光器的发展历程和现状

来源:电子之家 作者:华仔 浏览:1304

标签: 半导体 激光器 激光

摘要: 激光技术已成为现代生活中不可替代的技术之一,不论是工业加工、 医疗美容 、光纤通信,还是近年来火热的无人驾驶、智能机器人等,都与激光技术息息相关。今天我们主角是 半导体激光器 ,小编将带大家一起回顾它的发展历程及产业现状。

激光技术已成为现代生活中不可替代的技术之一,不论是工业加工、 医疗美容 、光纤通信,还是近年来火热的无人驾驶、智能机器人等,都与激光技术息息相关。今天我们主角是半导体激光器 ,小编将带大家一起回顾它的发展历程及产业现状。

从理论发展到实验室研制

激光的起源可以追溯到1916年爱因斯坦发布的《关于辐射的量子理论》 一文。爱因斯坦首次提出受激辐射理论,为日后激光的发展提供了理论基础。40年后,关于能否用半导体材料形成激光的话题开始被物理学家注意,艾格瀚等科学家提出了许多半导体激光器的设想及可能。

blob.png

经过几年的论证与实验,同质结GaAs半导体激光器于1962问世。但由于同质结半导体激光器的临界电流密度很高,不能在室温下实现连续受激激发,导致其几乎没有任何实用性。因此半导体激光器的研究方向指向了“实现室温情况下连续受激激发”。

为解决临界电流密度高的问题,科学家们提出了异质结构半导体激光器的概念,通过用不同带隙的半导体材料薄层组成“结”,有效地降低了临界电流密度。1967年,单异质结半导体激光器问世。与同质结半导体激光器相比,单异质结半导体激光器临界电流密度有了大幅度的下降,但仍处在一个较高的位置,未能实现室温条件下的连续受激激发的研究目标。尽管如此,单异质结半导体激光器的历史地位也不容轻视,它所使用的异质结结构与液相外延技术,为接下来的研究提供了重要的理论基础和技术支持。

稳定激发、提高寿命,半导体激光器走向实际应用

异质结构的成功运用为科学家指明了方向。既然单异质结半导体激光器的临界电流密度仍然偏高,那么双异质结构效果怎么样呢?

blob.png

1969年9月,Leningrad Ioffe研究所发布了双异质半导体激光器(Al x Ga 1-x As--GaAs)初步的研究成果。1970年初,贝尔实验室成功降低了双异质半导体激光器的临界电流密度, 实现了室温条件下的连续受激激发,宣告双异质半导体激光器面世。同年5月,Leningrad Ioffe研究所也成功实现双异质半导体激光器在室温下的连续受激发射。

室温下连续受激发射是激光器走向实用性的第一步。解决了室温下可用,就该考虑室温下耐用的问题了,半导体激光器的研究方向也随之转向“实现器件的长寿命与稳定性”。

国际科研人员通过不断改进器件结构,逐步提高了半导体激光器的工作寿命,在1977年实现了双异质短波长半导体激光器连续工作1*10 6 个小时。此后,美、日等国就改进器件结构、提高器件稳定性、降低损耗等方面展开研究,研制出CDH、BH、TJS、CDH等结构的AlGaAs-GaAs激光器,均实现了温室下连续受激激发及单模化工作。

长寿命光源的出现,为半导体激光器走向实际应用铺平了道路。研究人员发现,半导体激光器的波长与光纤十分相配,非常适宜用于光纤通信,因此半导体激光器搭上了光纤通信的发展列车,在不断进步的同时也推动着光通信行业的发展。

据业内人士透露,作为芜湖大院大所合作的重点项目,国产化5G通信芯片用最新一代碳化硅衬底氮化镓材料试制成功,打破国外垄断。这标志着今后国内各大芯片企业生产5G通信芯片,有望用上国产材料。大数据传输、云计算、AI技术、物联网,包括下一步的能源传输,对网络传输速度及容量提出了越来越高的要求,大功率芯片的市场需求非常大。

氮化镓有哪些优缺点

氮化镓材料系列具有低的热产生率和高的击穿电场,是研制高温大功率电子器件和高频微波器件的重要材料,用氮化镓制备出了金属场效应晶体管(MESFET)、异质结场效应晶体管(HFET)、调制掺杂场效应晶体管(MODFET)等新型器件,是制作微波器件的优先材料。

氮化镓的优点是禁带宽度大(3.4eV),热导率高(1.3W/cm-K),则工作温度高,击穿电压高,抗辐射能力强;导带底在Γ点,而且与导带的其他能谷之间能量差大,则不易产生谷间散射,从而能得到很高的强场漂移速度(电子漂移速度不易饱和);gan易与AlN、InN等构成混晶,能制成各种异质结构,已经得到了低温下迁移率达到105cm2/Vs的2-DEG(因为2-DEG面密度较高,有效地屏蔽了光学声子散射、电离杂质散射和压电散射等因素);晶格对称性比较低(为六方纤锌矿结构或四方亚稳的闪锌矿结构),具有很强的压电性(非中心对称所致)和铁电性(沿六方c轴自发极化)。在异质结界面附近产生很强的压电极化(极化电场达2MV/cm)和自发极化(极化电场达3MV/cm),感生出极高密度的界面电荷,强烈调制了异质结的能带结构,加强了对2-DEG的二维空间限制,从而提高了2-DEG的面密度(在AlGaN/GaN异质结中可达到1013/cm2,这比AlGaAs/GaAs异质结中的高一个数量级),这对器件工作很有意义。

氮化镓的前景

氮化镓的优点弥补了其缺点,特别是通过异质结的作用,其有效输运性能并不亚于GaAs,而制作微波功率器件的效果(微波输出功率密度上)还往往要远优于现有的一切半导体材料。

除了军用雷达的需求,在有争议和拥挤的环境中运行的操作要求,以及能够应对现代敏捷雷达和通信等优势,将为RF GaN在电子战市场带来机会。在日益复杂的频谱环境中,在更广泛和更高带宽上同时安全地传输语音、数据和视频将支持军事通信系统设计的趋势。我们预计相关的元器件需求也将越来越多地受到RF GaN的支撑。”无线基站仍然是RF GaN的单一最大收入部分,其渗透率越来越高,同比增长超过20%。报告称,虽然中国LTE部署的巨大推动已经结束,但无线行业在维护和在某些情况下压缩5G部署时间表方面做得非常好。由此产生的5G基站部署将成为RF GaN的主要商业增长驱动力。

先进半导体应用服务部主管Eric Higham指出,“GaN改善了高频、瞬时带宽、线性度和环境性能,这使得设备制造商能够开发出更高容量、更高功率和更高性能的无线电设备。5G部署将在多个方面为GaN提供机会,需求来自固定和移动应用,工作频率低于6GHz,以及Ka频段和更高毫米波频段。无线回程和VSAT中的RF GaN器件的机会也在增长,我们也看到了相邻RF能源市场的牵引力。”


型号 厂商 价格
EPCOS 爱普科斯 /
STM32F103RCT6 ST ¥461.23
STM32F103C8T6 ST ¥84
STM32F103VET6 ST ¥426.57
STM32F103RET6 ST ¥780.82
STM8S003F3P6 ST ¥10.62
STM32F103VCT6 ST ¥275.84
STM32F103CBT6 ST ¥130.66
STM32F030C8T6 ST ¥18.11
N76E003AT20 NUVOTON ¥9.67