电子产业
数字化服务平台

扫码下载
手机洽洽

  • 微信小程序

    让找料更便捷

  • 扫码下载手机洽洽

    随时找料

    即刻洽谈

    点击下载PC版
  • 华强电子网公众号

    电子元器件

    采购信息平台

  • 华强电子网移动端

    生意随身带

    随时随地找货

  • 华强商城公众号

    一站式电子元器件

    采购平台

  • 芯八哥公众号

    半导体行业观察第一站

三极管基本放大电路解析(深入浅出,经典!)

来源:电子之家 作者:华仔 浏览:3187

标签: 三极管

摘要: 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。

三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。

三极管基本放大电路解析 - 追逐 - 路漫漫其修远兮,吾将上下而求索

 
 

 

下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。

三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。

下面说说三极管的饱和情况。像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。

如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。

但是在实际使用中要注意,在开关电路中,饱和状态若在深度饱和时会影响其开关速度,饱和电路在基极电流乘放大倍数等于或稍大于集电极电流时是浅度饱和,远大于集电极电流时是深度饱和。因此我们只需要控制其工作在浅度饱和工作状态就可以提高其转换速度。

对于PNP型三极管,分析方法类似,不同的地方就是电流方向跟NPN的刚好相反,因此发射极上面那个箭头方向也反了过来——变成朝里的了。

快恢复二极管(简称FRD)是一种具有开关特性好、反向恢复时间短的半导体二极管。对于高压工作的FRD来说,平面工艺不可避免的存在着结面弯曲效应而影响击穿电压,使得器件实际击穿电压只有理想情况的10%-30%。因此为了保证FRD能工作在高电压下,就需要使用结终端技术来消除结面弯曲带来的影响,提高FRD器件的耐压。在提高耐压采用终端技术的同时,还要兼顾到其它特性的影响和优化。如本文后面将要提到的,在采用金属场板终端提高耐压的同时,还要防止圆片打火问题的发生。

  1场限环的基本结构

  图1:场限环结构示意图

  

  图2:多个场限环结构示意图

  

  场限环的基本结构见图1,图2.。就是在被保护的主结周围间隔一定距离,扩散形成一定大小的同心环。扩散环改变了主结边缘空间电荷分布,减轻了电场集中效应。提高了耐压。单环的作用有限,一般在高压下需要通过多个环来达到预定的电压。

  2 场板的基本结构分析

  图3:场板结构示意图

  

  场板的基本结构见图3,也是常用的提高耐压的方法之一。场板下除边缘部分外,电场分布是一维的,类似于MOS电容。击穿时的击穿电压为击穿时半导体的电压和氧化层的压降之和。在场版的边缘,电力线集中。如果场板长度比内部耗尽层还大,N+P结的场板有电力线从板向半导体发出,在半导体表面有电力线进入,这等效于半导体表面有正电荷,他对电场的影响可看做是无穷大的半导体中间增加了一层电荷,这些正电荷产生垂直于表面的场外,也将产生平行于表面的场,每一正电荷在其左边产生指向左的场,在其右边产生指向右的场。所以在场版下面的多数区域,正电荷产生的横向电场是互相削弱。然而在场板的边缘,所有正电荷产生的横向场是互相加强的,结果在那里造成一个横向场的峰值。如果场板很短或者无场板时,在PN结的边缘就有很强的电场,场板上所有正电荷都是使这点电场减少的,因此场板愈长,电场峰值愈小。

  3 气隙的击穿特性

  我们知道,影响空气间隙放电电压的因素有很多。主要有电场的情况,比如均匀与不均匀;电压的形式,比如直流,交流还是雷电冲击;大气的条件,比如温度,湿度,气压等。较均匀电场气隙的击穿电压与电压极性无关,直流,工频击穿电压(峰值)以及50%冲击击穿电压都相同,分散性很小。

  

  当S不过于小时(S>1cm), 均匀空气中的电场强度大致等于30KV/cm。稍不均匀的电场气隙的击穿电压,可以看作球与球之间,球与板之间,圆柱与棒之间,同轴圆柱的间隙之间的击穿。它的特点是不能形成稳定的电晕放电,电场不对称时,有极性效应,不很明显,直流,工频下的击穿电压以及50%冲击击穿电压相同,分散性不大,击穿电压和电场均匀程度关系极大,电场越均匀,同样间隙距离下的击穿电压就越高。直流电压下的击穿电压具有极性效应,棒棒电极间的击穿电压介于极性不同的棒板电极之间,平均击穿场强正棒和负板间约4.5KV/cm,负棒和正板间约10KV/cm,棒和棒之间约4.8-5KV/cm。击穿电压与间隙距离接近正比,在一定范围内,击穿电压与间隙距离呈线性关系。球与球间隙之间存在邻近效应,对电场会有畸变作用,使间隙电场分布不对称,同一距离下,球直径越大,击穿电压也越高。

  图4 击穿电压与间隙距离的关系

  

4 实验过程

  4.1失效现象与分析

  FRD在开发过程中工程批流片出来后测试击穿电压,当电压加到几百伏时,可开始看到有严重的打火现象,测试打火曲线如图5,打火发生后,圆片上可看到终端外围两个金属铝条有明显发黑的迹象,如图6。

  图5 FRD 圆片击穿电压测试曲线

  

 

  图6 FRD 圆片打火位置图片

  

 

  其中距离cell区较近的金属是终端的一个金属场板,在最外围的一个是截止环的金属。从失效现象来看,打火应该是最外围的两个金属之间进行的。工艺上,当初为了节省成本,金属完成后没有加钝化层次,因此两个金属之间是没有氧化等介质的。检查版上数据,金属场板到截止环金属之间距离为72um,怀疑可能此距离太小,又没有介质,因此导致金属之间电场过强,引起打火,为了验证,特对原结构进行了模拟。

  4.2原结构模拟结果

  如图7所示原始结构进行模拟,结果击穿电压约1500V,最外围的金属场板与最外围截止环金属之间电势差约800V,最外围场板承担了较大的电压,从表面电场分布看,最外围金属场板处表面电场最强,约2.6E5V/cm,前面其它环的电场基本在1.6E5V/cm左右,金属场板处电场较集中。而空气的击穿场强约为30KV/cm,金属场环和截止环之间距离为72um,空气耐压约220V,据此推断失效的原因应该是金属之间距离较近,电压较大引起空气击穿,从而发生打火现象。

  图7:FRD 原版结构

  

 

  图8 FRD原版模拟结果电势分布图

  

 

  图9 FRD原版模拟结果表面电场分布图

  

型号 厂商 价格
EPCOS 爱普科斯 /
STM32F103RCT6 ST ¥461.23
STM32F103C8T6 ST ¥84
STM32F103VET6 ST ¥426.57
STM32F103RET6 ST ¥780.82
STM8S003F3P6 ST ¥10.62
STM32F103VCT6 ST ¥275.84
STM32F103CBT6 ST ¥130.66
STM32F030C8T6 ST ¥18.11
N76E003AT20 NUVOTON ¥9.67