三极管是最重要的电子元器件之一,成功制作世界上第一只半导体三极管的美国物理学家约翰·巴丁(JohnBardeen)和他的同事布拉顿(Brattain)并获得了诺贝尔物理学奖。三极管的看家本领,是可以以小电流控制大电流,颇似武侠中的四两拨千斤。
下图是2种类型的三极管NPN和PNP的结构和电路图符号示意。
positive 正极 [?p?z?t?v]
negative负极 [?neg?t?v]
很多初学者都会认为三极管是两个PN结的简单凑合。这种想法是错误的,两个二极管的组合不能形成一个三极管。我们以NPN型三极管为例(见图2),两个PN结共用了一个P区——基区,基区做得极薄,只有几微米到几十微米,正是靠着它把两个PN结有机地结合成一个不可分割的整体,它们之间存在着相互联系和相互影响,使三极管完全不同于两个单独的PN结的特性。三极管在外加电压的作用下,形成基极电流、集电极电流和发射极电流,成为电流放大器件。
、三极管的电流放大作用与其物理结构有关,三极管内部进行的物理过程是十分复杂的,初学者暂时不必去深入探讨。从应用的角度来讲,可以把三极管看作是一个电流分配器。一个三极管制成后,它的三个电流之间的比例关系就大体上确定了(见图3),用式子来表示就是
β和α称为三极管的电流分配系数,其中β值大家比较熟悉,都管它叫电流放大系数。三个电流中,有一个电流发生变化,另外两个电流也会随着按比例地变化。例如,基极电流的变化量ΔIb=10μA,β=50,根据ΔIc=βΔIb的关系式,集电极电流的变化量ΔIc=50×10=500μA,实现了电流放大。
三极管自身并不能把小电流变成大电流,它仅仅起着一种控制作用,控制着电路里的电源,按确定的比例向三极管提供Ib、Ic和Ie这三个电流。为了容易理解,我们还是用水流比喻电流(见图4)。这是粗、细两根水管,粗的管子内装有闸门,这个闸门是由细的管子中的水量控制着它的开启程度。如果细管子中没有水流,粗管子中的闸门就会关闭。注入细管子中的水量越大,闸门就开得越大,相应地流过粗管子的水就越多,这就体现出“以小控制大,以弱控制强”的道理。由图可见,细管子的水与粗管子的水在下端汇合在一根管子中。三极管的基极b、集电极c和发射极e就对应着图4中的细管、粗管和粗细交汇的管子。电路见图5,若给三极管外加一定的电压,就会产生电流Ib、Ic和Ie。调节电位器RP改变基极电流Ib,Ic也随之变化。由于Ic=βIb,所以很小的Ib控制着比它大β倍的Ic。Ic不是由三极管产生的,是由电源VCC在Ib的控制下提供的,所以说三极管起着能量转换作用。
如图,假设三极管的β=100,RP=200K,此时的Ib=6v/(200k+100k)=0.02mA,Ic=βIb=2mA
当RP=0时,Ib=6v/100k=0.06mA,Ic=βIb=2mA。以上两种状态都符合Ic=βIb,我们说,三极管处于"放大区"。假设RP=0,Rb=1k,此时,Ib=6v/1k=6mA按Ic=βIb计算,Ic应等于600mA,而实际上,由于图中300欧姆限流电阻(Rc)的存在,实际上Ic=(6v/300)≈20mA,此时,Ic≠βIb,而且,Ic不再受Ib控制,即处于"饱和区",当RP和Rb大到一定程度,使Ube<死区电压(硅管约0.5V,锗管约0.3)此时be结处于不导通状态,Ib=0,则Ic=0,处于"截止区"。
单纯从“放大”的角度来看,我们希望β值越大越好。可是,三极管接成共发射极放大电路(图6)时,从管子的集电极c到发射极e总会产生一有害的漏电流,称为穿透电流Iceo,它的大小与β值近似成正比,β值越大,Iceo就越大。Iceo这种寄生电流不受Ib控制,却成为集电极电流Ic的一部分,Ic=βIb+Iceo。值得注意的是,Iceo跟温度有密切的关系,温度升高,Iceo急剧变大,破坏了放大电路工作的稳定性。所以,选择三极管时,并不是β越大越好,一般建议取硅管β为40~150,锗管取40~80。
在常温下,锗管的穿透电流比较大,一般由几十微安到几百微安,硅管的穿透电流就比较小,一般只有零点几微安到几微安。Iceo虽然不大,却与温度有着密切的关系,它们遵循着所谓的“加倍规则”,这就是温度每升高10℃,Iceo约增大一倍。例如,某锗管在常温20℃时,Iceo为20μA,在使用中管芯温度上升到50℃,Iceo就增大到160μA左右。测量Iceo的电路很简单(图7),三极管的基极开路,在集电极与发射极之间接入电源VCC(6V),串联在电路中的电流表(可用万用表中的0.1mA挡)所指示的电流值就是Iceo。
第1部分:毫微功耗运算放大器的直流增益
运算放大器(op amp)的高精度和高速度直接影响着功耗的量级。电流消耗降低则增益带宽减少;相反,偏移电压降低则电流消耗增大。
运算放大器的许多电子特性相互作用,相互影响。由于市场对低功耗应用的需求逐渐增大,如无线感应节点、 物联网 (IoT) 和楼宇自动化,因此为确保同时满足终端设备性能优化及功耗尽可能低,了解各电子特性间的平衡至关重要。此系列博文包含三部分,在第一部分中,我将介绍在毫微功率精密运算放大器中关于直流增益的功率与性能表现的平衡。
直流增益
你也许还记得,在学校中学到的运算放大器的典型反相(如图1)和非反向(如图2)增益配置。
图1:反相运算放大器
图2:非反相运算放大器
根据这些配置可分别得出反相和非反相运算放大器闭环增益等式,等式1和等式2:
等式中A_CL是闭环增益,R_F 是反馈电阻值,而R_2 是从负输入端到信号(反相)或接地(非反相)的电阻值。
这些等式说明直流增益与电阻比有关,与电阻值无关。另外,“功率”定律和欧姆定律显示了电阻值和消耗功率两者之间的关系(等式3):
P是电阻消耗的功率,V是电阻的压降,I是流经电阻的电流。
对毫微功耗增益和分压器配置而言,Equation 3显示,流经电阻的电流消耗最小,则消耗功率最小。Equation 4有助于你了解该原理:
R是电阻值。
根据这些等式,可以看出你必须选择既可以提供增益又可以使消耗功率(也称功耗)最小化的大电阻值。如果不能使流经反馈通道的电流最小化,那么使用毫微功耗运算放大器就没有任何优势可言。
一旦选定可以满足增益和功耗需求的电阻值后,你还需要考虑其它影响运算放大器信号调节精度的电子特性。统计非理想运算放大器固有的几个系统性小错误,你将会得出总偏移电压。电子特性——V_OS被定义为运算放大器输入端之间的有限偏移电压,并且描述了特定偏置点的错误。请注意,并未记录所有运算情况下的错误。为此,必须考虑增益误差、偏置电流、电压噪声、共模抑制比(CMRR)、电源抑制比(PSRR) 和漂移。本博文无法全面讨论涉及的所有参数,我们将详细讨论一下 V_OS 和漂移,以及这两者对毫微功率应用的影响。
实际上,运算放大器通过输入端展示V_OS,但有时在低频(近似直流)精密信号调节应用中则可能是一个问题。 在电压增益环节,随着信号被调节,偏移电压将上升,产生测量误差。此外,V_OS的大小随着时间和温度(漂移)而变化。因此,低频应用需要相当高分辨率的测量方式,选择一款配备最低漂移的精密 (V_OS ≤ 1mV)运算放大器非常重要。
等式5计算了与温度相关的最大V_OS:
我已经介绍了理论部分,如:为低频应用选择可以提高增益比和运算放大器精度的大电阻值,现在我将用两引线电化电池来做出实例解释。两引线电化电池常发出低频的小信号,用在各种便携式感应设备上,如气体检测仪、血糖监测仪等,选择一款低频(<10kHz) 毫微功耗运算放大器。
用氧气传感(见图 3) 作为具体的应用实例,假设感应器的最大输出电压为10mV(通过制造商指定的负载电阻将电流转换成电压R_L) ,则运算放大器的满量程输出电压为1V。通过Equation 2,可以看出 A_CL 的值需要为100,或者R_F是R_2的100倍。分别选择100MΩ电阻和1MΩ电阻,得出增益值为101,且电阻值足够大到可以限制电流并最小化功耗。
图3:氧气传感器
为最小化偏移误差,LPV821零漂移毫微功耗运算放大器是一款理想器件。 使用Equation 5并假设操作温度范围为0°C—100°C,该器件产生的最大偏移误差为:
另一款理想的器件是LPV811精密毫微功耗运算放大器。从其数据表收集必要数值插入等式5可以得出:
(请注意,LPV811数据表未指明偏移电压偏移的最大上限,因此在此处使用典型值)。
如果使用通用的毫微功耗运算放大器取代,如TLV8541 ,相关值变化会得出:
(TLV8541数据表未指明偏移电压偏移的最大上限,因此在此处仍使用典型值)。
如你所见,LPV821运算放大器是这个应用的理想选择。电流消耗为650nA的LPV821可以感应到氧气传感器输出电压低至18µV或更低的变化,并只有2.3mV的最大偏移增益误差。如果需要同时满足极高精密性和毫微功耗,零偏移毫微功耗运算放大器将是你的最佳选择。