电子产业
数字化服务平台

扫码下载
手机洽洽

  • 微信小程序

    让找料更便捷

  • 扫码下载手机洽洽

    随时找料

    即刻洽谈

    点击下载PC版
  • 华强电子网公众号

    电子元器件

    采购信息平台

  • 华强电子网移动端

    生意随身带

    随时随地找货

  • 华强商城公众号

    一站式电子元器件

    采购平台

  • 芯八哥公众号

    半导体行业观察第一站

电阻如何看色环读数?终端电阻的开发与应用

来源:电子之家 作者:华仔 浏览:401

标签:

摘要: 电阻如何看色环读数? 例:4环电阻 依次为:红黄红金 读为2700Ω=2.7K 误差为±5% 例:4环电阻 依次为:橙白红银 读为3900Ω=3.9K 误差为&

  电阻如何看色环读数?

  例:4环电阻 依次为:红黄红金 读为2700Ω=2.7K 误差为±5%

  例:4环电阻 依次为:橙白红银 读为3900Ω=3.9K 误差为±10%

  例: 4环电阻 依次为:橙橙金银 其中橙橙为33在乘上10-1=3.9Ω 误差为±10%

  例: 4环电阻 依次为:黄紫银银 其中黄紫为47在乘上10-2=0.47Ω 误差为±10%

当阻抗不匹配时,有哪些办法让它匹配呢?第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。第三,可以考虑使用串联/并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,

  从以上得知,读第三色环为金或银色一定要注意,因为它是乘的负数,电阻值一般为0.1-9.9Ω。

  关于误差率:本软件误差率的得数须乘上100,如算出误差得数显示0.02在乘上100=2%

  终端电阻的开发与应用:

  。终端电阻的应用场合:时钟,数据,地址线的终端串联,差分数据线终端并联等。

当阻抗不匹配时,有哪些办法让它匹配呢?第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。第三,可以考虑使用串联/并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,

  终端电阻示图

  B.终端电阻的作用:

  1、阻抗匹配,匹配信号源和传输线之间的阻抗,极少反射,避免振荡。

  2、减少噪声,降低辐射,防止过冲。在串联应用情况下,串联的终端电阻和信号线的分布电容以及 后级电路的输入电容组成RC滤波器,消弱信号边沿的陡峭程度,防止过冲。

  C.终端电阻取决于电缆的特性阻抗。

  D.如果使用0805封装、1/10W的贴片电阻,但要防止尖峰脉冲的大电流对电阻的影响,加30PF的电容。

  E. 有高频电路经验的人都知道阻抗匹配的重要性。在数字电路中时钟、信号的数据传送速度快时,更需注意配线、电缆上的阻抗匹配。

  高频电路、图像电路一般都用同轴电缆进行信号的传送,使用特性阻抗为Zo=150Ω、75Ω的同轴电缆。

  同轴电缆的特性阻抗Zo,由电缆的内部导体和外部屏蔽内径D及绝缘体的导电率er决定:

当阻抗不匹配时,有哪些办法让它匹配呢?第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。第三,可以考虑使用串联/并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,

  另外,处理分布常数电路时,用相当于单位长的电感L和静电容量C的比率也能计算,如忽略损耗电阻,则

当阻抗不匹配时,有哪些办法让它匹配呢?第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。第三,可以考虑使用串联/并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,

  图1是用于测定同轴电缆RG58A/U、长度5m的输入阻抗ZIN时的电路构成。这里研究随着终端电阻RT的值,传送线路的阻抗如何变化。

当阻抗不匹配时,有哪些办法让它匹配呢?第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。第三,可以考虑使用串联/并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,

  图1 同轴传送线路的终端电阻构成

  只有当同轴电缆的特性阻抗Zo和终端阻抗FT的值相等时,即ZIN=Zo=RT称为阻抗匹配。

  Zo≠RT时随着频率f,ZIN变化。作为一个极端的例子,当RT=0、RT=∞时可理解其性质(阻抗以,λ/4为周期起伏波动)。

  图2是RT=50Ω(稍微波动的曲线)、75Ω、dOΩ时的输人阻抗特性。当Zo≠RT时由于随着频率,特性阻抗会变化,所以传送的电缆的频率特上产生弯曲。

当阻抗不匹配时,有哪些办法让它匹配呢?第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。第三,可以考虑使用串联/并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,

  在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不匹配(相等)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。

  传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。例如,常用的闭路电视同轴电缆特性阻抗为75欧,而一些射频设备上则常用特征阻抗为50欧的同轴电缆。另外还有一种常见的传输线是特性阻抗为300欧的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。因为电视机的射频输入端输入阻抗为75欧,所以300欧的馈线将与其不能匹配。实际中是如何解决这个问题的呢?不知道大家有没有留意到,电视机的附件中,有一个300欧到75欧的阻抗转换器(一个塑料包装的,一端有一个圆形的插头的那个东东,大概有两个大拇指那么大的)?

  它里面其实就是一个传输线变压器,将300欧的阻抗,变换成75欧的,这样就可以匹配起来了。这里需要强调一点的是,特性阻抗跟我们通常理解的电阻不是一个概念,它与传输线的长度无关,也不能通过使用欧姆表来测量。为了不产生反射,负载阻抗跟传输线的特征阻抗应该相等,这就是传输线的阻抗匹配。如果阻抗不匹配会有什么不良后果呢?如果不匹配,则会形成反射,能量传递不过去,降低效率;会在传输线上形成驻波(简单的理解,就是有些地方信号强,有些地方信号弱),导致传输线的有效功率容量降低;功率发射不出去,甚至会损坏发射设备。如果是电路板上的高速信号线与负载阻抗不匹配时,会产生震荡,辐射干扰等。

  当阻抗不匹配时,有哪些办法让它匹配呢?第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。第三,可以考虑使用串联/并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485总线接收器,常在数据线终端并联120欧的匹配电阻。

  上下拉电阻常见的问题分析:

  一般说来,不光是重要的信号线,只要信号在一段时间内可能出于无驱动状态,就需要处理。

  比如说,一个CMOS门的输入端阻抗很高,没有处理,在悬空状况下很容易捡拾到干扰,如果能量足够甚至会导致击穿或者闩锁,导致器件失效。祈祷输入的保护二极管安全工作吧。如果电平一直处于中间态,那输出就可能是不确定的情况,也可能是上下MOS都导通,对器件寿命造成影响。

  总线上当所有的器件都处于高阻态时也容易有干扰出现。因为这时读写控制线处于无效状态,所以不一定会引起问题。你如果觉得自己能够接受的话也就将就了。但是这时你就要注意到,控制线不能悬空,不然……

接地电阻都是什么意思?" src="/upload/201808/2474220-1F605104U0413.jpg" style="width: 500px; height: 250px" />

  TTL电路的输入端是一个发射极开路引出的结构,拉高或者不接都是高电平,但是强烈建议不要悬空不接。

  上拉还是下拉?要看需要。一方面器件可能又要求,另一方面,比如总线上两个器件,使能控制都是高有效,那么最好下拉,否则当控制信号没有建立的时候就会出现两个冲突,可能烧片。如果计算机总线上面挂了一个D/A,上电复位信号要对它清零或者预置,那么总线可以上下拉到你需要的数字。

  至于上下拉电阻的大小,这个情况就比较多了。CMOS输入的阻抗很高,上下拉电阻阻值可以大一些,一般低功耗电路的阻值取得都比较大,但是抗干扰能力相应比较弱一些。

  很多场合下拉电阻取值比上拉电阻要小,这个是历史遗留问题。如上面所说,TTL电路上拉时输入3集管基射反偏,没有什么电流,但是下拉时要能够使得输入晶体管工作,这个在TTL的手册中可以查到。

上拉下拉电阻问题分析,流散、接地、冲击接地电阻都是什么意思?

  也是为了这个历史遗留问题,有些CMOS器件内部采用了上拉,这时它会告诉你可以不处理这些管脚,但是这时你就要注意了,因为下拉再用10K可能不好使,因为也许内置的20K电阻和外置的10K把电平固定在了1V左右。

  有时候你会看到150欧姆或者50欧姆左右的上下拉电阻,尤其是在高速电路中会看到。

  150欧姆电阻下拉一般在PECL逻辑中出现。PECL逻辑输出级是设计开路的电压跟随器,需要你用电阻来建立电压。

  50欧姆的电阻在TTL电路中用的不多,因为静态功耗实在是比较大。在CML电路和PECL电路中兼起到了端接和偏置的作用。

  CML电路输出级是一对集电极开路的三极管,需要一个上拉电阻来建立电平。这个电阻可以放在发送端,那么接受端还需要端接处理,也可以放到接受端,这时候端接电阻和偏置电阻就是一个。PECL电路结构上就好像CML后面跟了一个射极跟随器。

  OC门也使用上拉电阻,这个和CML有一点相像,但是还不太一样。CML和PECL电路中三极管工作在线形区,而普通门电路和OC/OD门工作在饱和区。OC/OD门电路常用作电平转换或者驱动,但是其工作速度不会太快。

上拉下拉电阻问题分析,流散、接地、冲击接地电阻都是什么意思?

  为什么?在OC/OD门中,上拉电阻不能太小,否则功耗会很大。而一般门的负载呈现出一个电容,负载越多,电容越大。当由高到低跳变时,电容的放电通过输出端下拉的MOS或者Bipolar管驱动,速度一般还是比较快的,但是由低到高跳变的时候,就需要通过上拉电阻来完成,R大了几十甚至上百倍,假设C不变,时间常数相应增加同样的倍数。这个在示波器上也可以明显的看出:上升时间比下降时间慢了很多。其实一般门电路上拉比下拉的驱动能力都会差一些,这个现象都存在,只不过不太明显罢了?

  (为什么会这样?动动脑筋。想一想输出电平的变化会对输出级器件的工作点造成什么样的影响。)

  在总线的上下拉电阻设计中,你就要考虑同样的问题了:总线上往往负载很重,如果你要电阻来提供一些值,你就必须保证电容能通过电阻在一定时间内放电到可接受的范围。如果电阻太大,那么就可能出错。

  流散、接地、冲击接地电阻都是什么意思?

  接地极的对地电压与经接地极流入地中的接地电流之比,称为流散电阻。

  电气设备接地部分的对地电压与接地电流之比,称为接地装置的接地电阻,即等于接地线的电阻与流散电阻之和。一般因为接地线的电阻甚小,可以略去不计,因此,可认为接地电阻等于流散电阻。

上拉下拉电阻问题分析,流散、接地、冲击接地电阻都是什么意思?

  为了降低接地电阻,往往用多根的单一接地极以金属体并联连接而组成复合接地极或接地极组。由于各处单一接地极埋置的距离往往等于单一接地极长度而远小于40m,此时,电流流入各单一接地极时,将受到相互的限制,而妨碍电流的流散。换句话说,即等于增加各单一接地极的电阻。这种影响电流流散的现象,称为屏蔽作用。

  由于屏蔽作用,接地极组的流散电阻,并不等于各单一接地极流散电阻的并联值。此时,接地极组的流散电阻

  Rd = Rd1/(n·η)

  (1)式中:Rd1──单一接地极的流散电阻

  n ──单一接地极的根数

  η ──接地极的利用系数,它与接地极的形状、单一接地极的根数和位置有关

上拉下拉电阻问题分析,流散、接地、冲击接地电阻都是什么意思?

  以上所谈的接地电阻,系指在低频、电流密度不大的情况下测得的,或用稳态公式计算得出的电阻值。这与雷击时引入雷电流用的接地装置的工作状态是大不相同的。由于雷电流是个非常强大的冲击波,其幅度往往大到几万甚至几十万安的数值。这样,使流过接地装置的电流密度增大,并受到由于电流冲击特性而产生电感的影响,此时接地电阻称为冲击接地电阻,也可简称冲击电阻。  由于流过接地装置电流密度的增大,以致土壤中的气隙、接地极与土壤间的气层等处发生火花放电现象,这就使土壤的电阻率变小和土壤与接地极间的接触面积增大。结果,相当于加大接地极的尺寸,降低了冲击电阻值。

  长度较长的带形接地装置,由干电感的作用,当超过一定长度时,冲击电阻不再减少,这个极限长度称为有效长度、土壤电阻率越小,雷电流波头越短,则有效长度越短。

上拉下拉电阻问题分析,流散、接地、冲击接地电阻都是什么意思?

  由于各种因素的影响,引入雷电流时接地装置的冲击电阻,乃是时间的函数。接地装置中雷电流增长至幅值IM的时间,是滞后于接地装置的电位达到其最大值 UM 的时间的。但在工程中已知冲击电流的幅值IM和冲击电阻 Rds的条件下,计算冲击电流通过接地极流散时的冲击电压幅值 UM = IM·Rds 。由于实际上电位与电流的最大值发生于不同时间,所以这样计算的幅值常常比实际出现的幅值大一些,是偏于安全的,因此在实际中还是适用的。

型号 厂商 价格
EPCOS 爱普科斯 /
STM32F103RCT6 ST ¥461.23
STM32F103C8T6 ST ¥84
STM32F103VET6 ST ¥426.57
STM32F103RET6 ST ¥780.82
STM8S003F3P6 ST ¥10.62
STM32F103VCT6 ST ¥275.84
STM32F103CBT6 ST ¥130.66
STM32F030C8T6 ST ¥18.11
N76E003AT20 NUVOTON ¥9.67