电子产业
数字化服务平台

扫码下载
手机洽洽

  • 微信小程序

    让找料更便捷

  • 扫码下载手机洽洽

    随时找料

    即刻洽谈

    点击下载PC版
  • 华强电子网公众号

    电子元器件

    采购信息平台

  • 华强电子网移动端

    生意随身带

    随时随地找货

  • 华强商城公众号

    一站式电子元器件

    采购平台

  • 芯八哥公众号

    半导体行业观察第一站

基于BP神经网络的PID控制器及仿真

来源:-- 作者:-- 浏览:3575

标签:

摘要: 1. 引言   PID(比例-积分-微分)控制器作为最早实用化的控制器已有50多年历史,因其具有算法简单、鲁棒性好、可靠性高、直观性好等优点被广泛的应用于工业过程控制及运动控制中[1]。常规PID控制效果的优劣,不仅仅取决于控制系统模型的精确程度,还必须调整好三个参数的关系,而这种关系不一定是简单的线性组合。实际的工业过程及运动过程往往具有时变性、变参数、变结构等不确定性及很强的非线性,精确的数学

  1. 引言

  PID(比例-积分-微分)控制器作为最早实用化的控制器已有50多年历史,因其具有算法简单、鲁棒性好、可靠性高、直观性好等优点被广泛的应用于工业过程控制及运动控制中[1]。常规PID控制效果的优劣,不仅仅取决于控制系统模型的精确程度,还必须调整好三个参数的关系,而这种关系不一定是简单的线性组合。实际的工业过程及运动过程往往具有时变性、变参数、变结构等不确定性及很强的非线性,精确的数学模型难以建立,此外,常规PID还有实现在线调整困难,参数间相互影响,参数整定时间长等缺点,难以取得理想的控制效果。

 

  随着控制理论的发展,将应用广泛的 PID控制器 与智能控制理论相结合[2]成为智能控制研究的新方向,神经网络算法具有逼近任意非线性表达能力,很强的自学习能力和概括推广能力,在解决高度非线性和不确定系统方面有很大的的潜能,应用神经网络,可以从复杂的PID三个参数组合中寻求最佳的线性组合,使神经网络和PID本质结合。从而使得控制器具有较好的自适应性,实现参数的自动实时调节,适应过程的变化,提高系统了的鲁棒性和可靠性。

  2. BP 神经网络

  2.1 BP神经网络 的构成及设计[3]

  BP神经网络是一种具有三层或三层以上的神经网络,包括输入层、隐含层、输出层,上下层之间实现全连接,而每层神经元之间无连接。当一对学习样本提供给网络后,神经元的激活值从输入层经各中间层向输出层传播,在输出层的各神经元获得网络的输入响应。接下来,按照减少目标输出与实际误差的方向,从输出层经过各中间层逐层修正各连接权值,最后回到输入层,这种算法即BP算法。随着这种误差逆的传播修正不断进行,网络对输入模式响应的正确率也不断上升。

  (1)输入输出层的设计

  输入层的设计可以根据需要求解的问题和数据表示方式确定,若输入信号为模拟波形,那么输入层可以根据波形的采样点数目撅腚输入单元的维数,也可以用一个单元输入,这是输入样本为采样的时间序列。输出层的维数可以根据使用者的要求确定。如果BP网络用作分类器,类别模式一共有m个,那么输出层神经元的个数为 m或者。

  (2)隐层的设计

  隐层单元的数目与问题的要求、输入/输出单元的数目都有直接的关系,隐单元的数目太多会导致学习时间过长、误差不一定最佳,也会导致容错性差、不能识别以前没有的样本等等,因此,一定存在一个最佳的隐单元数,通常用以下三个公式来选择最佳隐单元数:

隐层的设计

  2.2 典型神经网络结构

  一个典型的三层神经网络结构如下图所示:

BP神经网络结构图

图1  BP神经网络结构图

  其中: 、 、…、 为 BP网络的输入; 、 、…、 为 BP网络的输出,对应PID控制器的三个参数;为输层到隐含层的连接权值;为隐含层到输出层的连接权值。通过神经网络的自学习、加权系数的调整,使神经网络输出对应于某种最优控制规律下的PID控制器参数。

  图一中各参数之间的关系[4]如下:

各参数之间的关系 

  3. 神经网络PID控制器及控制算法

  1、 BP神经网络PID控制器结构如下图所示:

神经网络控制器结构图

图2  神经网络控制器结构图

  由图可知:控制器由两部分组成,分别为常规PID控制和神经网络,其中,常规PID直接对被控对象进行闭环控制,并且其控制参数Kp、Ki、Kd为在线调整方式;神经网络,根据系统的运行状态,调节PID控制器的参数,以期达到某种性能指标的最优化,使输出层神经元的输出对应于PID控制器的三个可调参数。通过神经网络的自学习、加权系数的调整,使神经网络输出对应于某种最优控制规律下的PID控制器参数。

  2、控制算法

  神经网络PID的控制算法[5]如下:

(1).  确定神经网络的结构,即确定输入节点数和隐含层节点数,并给出各层加权系数的初值和,并选定学习速率 和惯性系数 ,令k =1;
(2).  采样得到r(k)和y(k),计算当前时刻误差error(k)= r(k)-y(k);
(3).  计算各神经网络的输入、输出,其输出层的输出即为PID控制器的三个控制参数Kp、Ki、Kd;
(4).  计算 PID控制器的输出;
(5).  进行神经网络学习,在线调整加权系数,实现 PID控制参数的自适应调整;
(6).  令k=k+1,返回第(1)步。

   4. 仿真实例

  4.1 被控对象

近似数学模型
神经网络的结构选择4-5-3,学习速率为0.55,惯性系数为0.04,加权系数初始值为区间[-0.5,0.5]上的随机数,采样频率为1000Hz。

 

    Matlab 仿真结果如图三所示:

输入输出曲线

图3-1  输入输出曲线

误差曲线

图3-2  误差曲线

  4.2 仿真结果分析

  由仿真曲线可以看出,神经网络PID稳态误差小,解决了常规PID超调,抖动等问题,控制精度高,实现了对控制信号几乎相同的跟踪,具有较好的快速性和适应性。

  5. 结语

  神经网络 PID控制器 实现了两种算法本质的结合,借助于神经网络的自学习,自组织能力,可实现PID参数的在线调整,控制器自适应性好;该算法不要求被控对象有精确的数学模型,扩大了应用范围,控制效果良好;在合理选择神经网络的结构的情况下,该算法有很强的泛化能力。基于以上优点,神经网络PID控制器具有很好的发展应用前景。

  参考文献

[1]  温良, 付兴武. 神经网络 PID 在温度控制系统中的研究与仿真[J].微计算机信息,2004(7):3-4.
[2]  易继锴.智能控制技术[M].北京:北京工业大学出版社,1999:95- 138
[3]  神经网络理论与MATLAB 7实现[M].北京:电子工业出版社.2005
[4]  吴伟, 晏梦云, 魏航信. 基于神经网络的PID控制及其仿真,现代电子技术, 2009
[5]  刘金琨. 先进PID 控制及其MATLAB 仿真[M ]. 北京: 电子工业出版社, 2003.

型号 厂商 价格
EPCOS 爱普科斯 /
STM32F103RCT6 ST ¥461.23
STM32F103C8T6 ST ¥84
STM32F103VET6 ST ¥426.57
STM32F103RET6 ST ¥780.82
STM8S003F3P6 ST ¥10.62
STM32F103VCT6 ST ¥275.84
STM32F103CBT6 ST ¥130.66
STM32F030C8T6 ST ¥18.11
N76E003AT20 NUVOTON ¥9.67