使用无铅和窄节距凸点的晶圆级封装(WLP)在全球WLP的市场需求中占据的份额还比较小。尽管根据国际半导体技术蓝图(ITRS)预测:到2009年,凸点间的节距(相邻凸点中心到中心的距离)为100mm。但对于量产的凸点制造商来说,目前市场对节距<100mm凸点的需求量非常低。例如,焊料凸点的鼻祖—IBM,仍在许多产品中使用节距为220mm的C4凸点技术。对窄节距互连来说,目前一个很小但增长迅速的应用领域是在高密度象素探测器阵列上的应用。与此同时,很多市场和实际应用对无铅焊料的需求也呈快速增长态势。大量汽车电子产品和手机的OEM供应商发现,客户对于无铅产品的需求正持续增长。觽n\坎? 由于其成本低,导电和熔点相对较低等特点,铅被广泛应用于电子产品中。然而,一些国际间的协议,特别是欧盟法令,出于个别国家政府的要求和消费者的特别需要,在出售的消费类电子产品中,都要减少使用那些已知的有毒材料。因此,尽管铅的各项性能都很出色,但仍需寻找在电子产品中可替代铅的材料。烄锢e褉? 据估计,电子封装中30%的焊料连接都是用于无源器件的连接。CaliforniaMicroDevices(CMD)生产的带有凸点的无源器件和AVX公司生产的“集成无源器件”都是直接在晶圆上制作完成的。他们所使用的厚的Ti/Cu凸点下金属化层(UBM)可以与含铅焊料和无铅焊料兼容。尺寸在150-300mm的含铅或无铅的焊料球被放置在无源器件的晶圆上实现WLP。但AVX公司采用了蒸发C4工艺制作凸点后,发现对制造成本的控制未能达到他们期待的水平。因此,尽管他们已经可以制作尺寸为60mm的凸点,但在实际的产品中仍然没有使用。受限的元件供应商也对焊料印刷技术进行了评估,这些技术用于他们生产的带凸点的无源器件中;到目前为止,使用焊膏印刷技术的最大挑战在于焊料球尺寸的均匀性无法得到保证。最新的报道显示,焊膏供应商已经可以明显改善了焊膏球中的空洞。圱%,?lt;荳 有很多种方法可以用来制作晶圆级凸点(表1)。焊料喷射、植焊球和接线柱球焊工艺都具有高度的设计灵活性,都属于顺序(逐个)制作凸点的方法,但这类方法的生产周期较长。使用焊料喷射的方法完成WLP时,针对不同的设计版图,不需要增加新的光刻设备(图1和图2)。对于新版图不同的引脚分布情况,可以根据CAD文件通过程序对机器进行调整。PacTech公司和MicroFabTechnologies已经开发出带有快速焊料凸点喷射能力的精密仪器;通常在铝焊盘上的UBM是Ti/Cu和化学镀镍金(ENIG)。与此同时,焊料球的放置通常限于相对较大的焊球尺寸,并且应用于新设计时需要做一些新的调整。丝网印刷(Stenciling)、微镀工艺和铟蒸发沉积属于并行凸点制作工艺(所有的凸点都同时制作完成),并且微镀工艺和铟蒸发沉积都可以提供高密度节距。高密度象素探测器?庂邕SI 对于象素阵列的研究兴趣在不断增长,对应于不同的探测器的应用,它需要高密度象素。这类阵列有时在每平方厘米的范围内拥有40,000个象素单元,每个单元都需要一个焊料凸点将硅基板上的探测器与其他全硅技术制造的读出IC连接起来。正是为了保证如此狭窄的空间内分布高密度的互连,节距需要≤50mm。目前已经开发了两种窄节距互连方案:如节距为25-50mm的电镀共晶SnPb(图3)的含铅焊料和节距约为15-50mm的铟焊料。?埙W搀萠, (饷$B/+傽 据报道,欧洲的研究人员已经将节距为15mm的铟凸点WLP工艺应用到了象素IR焦平面阵列系统。铟凸点在小型研究性的实验室已是一种简单的工艺,并证明可以实现具有挑战性的50mm的节距。铟焊料是脆性的,可在较低的操作温度下使用。然而,由于铟的剪切强度较低,通常在探测器组装过程中使用铟凸点的产品成品率较低。因此,更为牢固的共晶SnPb焊料刚好满足了多数高能量物理(HEP)研究人员应用象素探测器阵列作粒子研究的要求。图3 在两种放大倍率下,用于像素阵列的窄节距WLP,<噢C萑d! 其凸点中心之间的距离为50uM。(来源:MCNC-RDI) 全球范围内,很多组织都在将高密度象素探测阵列引入到其研究领域中,像天体物理学以及对医学影像学和对蛋白质结晶的研究。例如,一种在医学研究领域的应用就是X射线成像,这对细微骨头的精细高分辨率成像是必不可少的。总的来说,高密度象素探测器的应用还没有推动无铅焊料的使用。欧盟的政策和全球范围环保人士对消除电子产品中铅污染的关注虽然很具威力,但对于此类相对小规模的特殊应用来说并不构成严重的威胁。然而,随着焊料互连在医学影像的应用大量增长,它得到了政府和环保主义者越来越多的关注,因此它也面临着必须向无铅焊料互连发展转变。继续发展还是放弃高密度含铅焊料技术?最终,研究人员在硅3-D互连结构中使用铜作为通孔之间的连接和对环境无害的键合材料作为解决方案.
欢迎来一步电子网 查看更多精彩信息 请登录 www、kuyibu、com/botan